Login
теория вероятности.
NEW 16.07.13 17:22
in Antwort zhyks 16.07.13 17:16
ну да, вон они в посте 68 все расписаны кроме тройного промаха. в сумме с тройным промахом будет единица. поэтому можно из 1 сразу его вероятность вычитать, чтоб получить результат без долгих вычислений всех остальных вероятностей.
NEW 16.07.13 17:29
да никаких азартных игр.. я вижу ошибки в простыне Валеры_из_Гамбурга, вероятность правилъности его решения = 0, в чём же тут азарт?
in Antwort zhyks 16.07.13 17:20
В ответ на:
Это уже элемент не из теории вероятности, а из теории азартных игр.
Это уже элемент не из теории вероятности, а из теории азартных игр.
да никаких азартных игр.. я вижу ошибки в простыне Валеры_из_Гамбурга, вероятность правилъности его решения = 0, в чём же тут азарт?
NEW 16.07.13 17:51
in Antwort cobrа 16.07.13 17:29
у вас то вообще никакого решения нет .
о чем с вами говорить???
а то забавно выходит ..сидит человек который не способен рещшать ..и судит тех кто умеет ..
смешно ..
давайте свое решение..тогда и поговорим .
а пока что с вами неочем говорить ..
о чем с вами говорить???
а то забавно выходит ..сидит человек который не способен рещшать ..и судит тех кто умеет ..
смешно ..
давайте свое решение..тогда и поговорим .
а пока что с вами неочем говорить ..
NEW 16.07.13 17:56
in Antwort valera_hamburg 16.07.13 17:51
мое решение вот..подробно с разяснениями ..а где ваше?? 
++++++++++++++++++++++++++++++++++++
Как решать задачу: "Три охотника одновременно стреляют в зайца. Шансы на успех первого 3 из 4, второго 1 из 2 и ,наконец, третьего 1 из 4. Какова вероятность того, что заяц будет убит?
----------------------------
ну давайте подробно ..
условие задачи есть
..три независимых события с вероятностями
(обявляем переменные и присваиваем им значение)
А-75% (3 из 4)
В- 50% (1 из 2 )
и С-25%(1 из 4.)
+++++++++++++++++++++++++++++++++++++++++++
НЕМНОГО ТЕОРИИ..
Использование свойств вероятности события в большинстве случаев существенно упрощают расчет вероятности сложного события через вероятности простых событий его составляющих...
Из теоремы умножения вероятностей следует ---
Если события А и В независимы, то вероятность их совместного появления равна произпроизведению их вероятностей
Р(А+В) = Р(А)xР(В).
Следствие 3
Для любого числа независимых событий А1, А2 , А3 , …
Р(А1+А2+А3...n) = Р(А1)xР(А2)xР(А3)...n
---------------------------------------
Определить вероятность поражения цели ТРЕМЯ ПУЛЯМИ
(есть два варианта решения
...начнем с более наглядного и понятного..но длиного ..можно и короче---расчитав вероятность промаха..но это сделаем в конце для проверки 

)
если вероятность поражения
ПЕРВОЙ пулей.... А-75%
ВТОРОЙ...В- 50%
ТРЕТЕЙ...С-25%
Поражение первой (событие А) и второй ( событие В) и третьей (событие С) ===есть события независимые.!
Событие «поражение цели тремя пулями »
есть сумма А+В+С.
Представим ее в виде восьми несовместных событий(так как восемь возможных комбинаций!)
(тут не получается корректно писать формулы..булевы еденицы буду большими буквами..а булевы ноли -- малыми ..представте что малые ето привычные вам с черточкой над буквами
событие произошло -большаяА
не произошло--маленькая а
поняли ?
А+В+С= АВС+авс+АВс+авС+АвС++аВс+Авс+аВС
Согласно аксиоме сложения вероятность суммы несовместных событий равна сумме вероятностей каждого.
Тогда.....( Р...ето вероятность события )...(БОЛЬШИЕ БУКВЫ В ОПЕРАТОРАХ--БУЛЕВЫ ЕДЕНИЦЫ...МАЛЕНЬКИЕ БУКВЫ...БУЛЕВЫ НУЛИ..............0
р(А+В+С)=Р(АВС)+Р(авс )+Р( АВс)+Р(авС )+Р(АвС )+Р(аВс)+Р(Авс)+Р(аВС)
Согласно следствию 1 из аксиомы 4 вероятность противоположного события равна 1 за вычетом вероятности прямого события
Р(а)=1-Р(А)
р(А+В+С)=Р(А)Р(В)Р(С)+Р(а)Р(в)Р(с)+Р(А)Р(В)Р(с)+р(а)Р(в)Р(С)+Р(А)Р(в)Р(С)+Р(а)Р(В)Р(с)+Р(А)Р(в)Р(с)+Р(а)Р(В)Р(С)
из условия задачи.....
Р(А)=0.75
Р(В)=0.5
Р(С)=0.25
а из преобразования
Р(а)=1-Р(А)
Р(а)=0.25
Р(в)=0.5
Р(с)=0.75
подставляем эти числовые значения в нашу формулу...
р(А+В+С)=Р(А)Р(В)Р(С)+Р(а)Р(в)Р(с)+Р(А)Р(В)Р(с)+р(а)Р(в)Р(С)+Р(А)Р(в)Р(С)+Р(а)Р(В)Р(с)+Р(А)Р(в)Р(с)+Р(а)Р(В)Р(С)
р(А+В+С)==(0.75х0.5х0.25)+(0.25х0.5х0.75)+(0.75х0.5х0.75)+(0.25х0.5х0.25)+(0.75х0.5х0.25)+(0.25х0.5х0.75) +(0.75х0.5х0.25)+(0.25х0.5х0.25)
р(А+В+С)=5(0.75х0.5х0.25)+(0.75х0.5х0.75)+2(0.25х0.5х0.25)
р(А+В+С)==0.8125
р(А+В+С)=81.25%
++++++++++++++++++++++++++++++++++++++
расчитаем вероятность промаха ...
Р(а+в+с)=Р(а)Р(в)Р(с)+Р(А)Р(В)Р(С)=(0.25х0.5х0.75)+(0.75х0.5х0.25)=0.1875
вероятность промаха р=18.75%
ну и естественно вероятность поражения будет
Р(а)=1-Р(А)
Р(а)=1-0.1875=0.8125
что совпадает с полученым ранее значением ..

++++++++++++++++++++++++++++++++++++
Как решать задачу: "Три охотника одновременно стреляют в зайца. Шансы на успех первого 3 из 4, второго 1 из 2 и ,наконец, третьего 1 из 4. Какова вероятность того, что заяц будет убит?
----------------------------
ну давайте подробно ..
условие задачи есть
..три независимых события с вероятностями
(обявляем переменные и присваиваем им значение)
А-75% (3 из 4)
В- 50% (1 из 2 )
и С-25%(1 из 4.)
+++++++++++++++++++++++++++++++++++++++++++
НЕМНОГО ТЕОРИИ..
Использование свойств вероятности события в большинстве случаев существенно упрощают расчет вероятности сложного события через вероятности простых событий его составляющих...
Из теоремы умножения вероятностей следует ---
Если события А и В независимы, то вероятность их совместного появления равна произпроизведению их вероятностей
Р(А+В) = Р(А)xР(В).
Следствие 3
Для любого числа независимых событий А1, А2 , А3 , …
Р(А1+А2+А3...n) = Р(А1)xР(А2)xР(А3)...n
---------------------------------------
Определить вероятность поражения цели ТРЕМЯ ПУЛЯМИ
(есть два варианта решения
если вероятность поражения
ПЕРВОЙ пулей.... А-75%
ВТОРОЙ...В- 50%
ТРЕТЕЙ...С-25%
Поражение первой (событие А) и второй ( событие В) и третьей (событие С) ===есть события независимые.!
Событие «поражение цели тремя пулями »
есть сумма А+В+С.
Представим ее в виде восьми несовместных событий(так как восемь возможных комбинаций!)
(тут не получается корректно писать формулы..булевы еденицы буду большими буквами..а булевы ноли -- малыми ..представте что малые ето привычные вам с черточкой над буквами
событие произошло -большаяА
не произошло--маленькая а
поняли ?
А+В+С= АВС+авс+АВс+авС+АвС++аВс+Авс+аВС
Согласно аксиоме сложения вероятность суммы несовместных событий равна сумме вероятностей каждого.
Тогда.....( Р...ето вероятность события )...(БОЛЬШИЕ БУКВЫ В ОПЕРАТОРАХ--БУЛЕВЫ ЕДЕНИЦЫ...МАЛЕНЬКИЕ БУКВЫ...БУЛЕВЫ НУЛИ..............0
р(А+В+С)=Р(АВС)+Р(авс )+Р( АВс)+Р(авС )+Р(АвС )+Р(аВс)+Р(Авс)+Р(аВС)
Согласно следствию 1 из аксиомы 4 вероятность противоположного события равна 1 за вычетом вероятности прямого события
Р(а)=1-Р(А)
р(А+В+С)=Р(А)Р(В)Р(С)+Р(а)Р(в)Р(с)+Р(А)Р(В)Р(с)+р(а)Р(в)Р(С)+Р(А)Р(в)Р(С)+Р(а)Р(В)Р(с)+Р(А)Р(в)Р(с)+Р(а)Р(В)Р(С)
из условия задачи.....
Р(А)=0.75
Р(В)=0.5
Р(С)=0.25
а из преобразования
Р(а)=1-Р(А)
Р(а)=0.25
Р(в)=0.5
Р(с)=0.75
подставляем эти числовые значения в нашу формулу...
р(А+В+С)=Р(А)Р(В)Р(С)+Р(а)Р(в)Р(с)+Р(А)Р(В)Р(с)+р(а)Р(в)Р(С)+Р(А)Р(в)Р(С)+Р(а)Р(В)Р(с)+Р(А)Р(в)Р(с)+Р(а)Р(В)Р(С)
р(А+В+С)==(0.75х0.5х0.25)+(0.25х0.5х0.75)+(0.75х0.5х0.75)+(0.25х0.5х0.25)+(0.75х0.5х0.25)+(0.25х0.5х0.75) +(0.75х0.5х0.25)+(0.25х0.5х0.25)
р(А+В+С)=5(0.75х0.5х0.25)+(0.75х0.5х0.75)+2(0.25х0.5х0.25)
р(А+В+С)==0.8125
р(А+В+С)=81.25%
++++++++++++++++++++++++++++++++++++++
расчитаем вероятность промаха ...
Р(а+в+с)=Р(а)Р(в)Р(с)+Р(А)Р(В)Р(С)=(0.25х0.5х0.75)+(0.75х0.5х0.25)=0.1875
вероятность промаха р=18.75%
ну и естественно вероятность поражения будет
Р(а)=1-Р(А)
Р(а)=1-0.1875=0.8125
что совпадает с полученым ранее значением ..
NEW 16.07.13 17:57
пост 2, и решение второй задачи - сообщение 41.

in Antwort valera_hamburg 16.07.13 17:51
В ответ на:
у вас то вообще никакого решения нет .
о чем с вами говорить???
а то забавно выходит ..сидит человек который не способен рещшать ..и судит тех кто умеет ..
смешно ..
давайте свое решение..тогда и поговорим .
а пока что с вами неочем говорить ..
у вас то вообще никакого решения нет .
о чем с вами говорить???
а то забавно выходит ..сидит человек который не способен рещшать ..и судит тех кто умеет ..
смешно ..
давайте свое решение..тогда и поговорим .
а пока что с вами неочем говорить ..
пост 2, и решение второй задачи - сообщение 41.
NEW 16.07.13 18:18
in Antwort valera_hamburg 16.07.13 17:56, Zuletzt geändert 16.07.13 18:43 (cobrа)
давайте, я лучше ваши ошибки вам покажу
ошибаетесь. в задаче это не спрашивали, в задаче спрашивается вероятность хоть одного попадания.
ошибаетесь. правильно так: одновременное тройное попадание - это произведение А*B*C
ошибаетесь. правильно так: P(AB) = P(A)*P(B)
ошибаетесь. правильно так:
1 = Р(А)Р(В)Р(С)+Р(а)Р(в)Р(с)+Р(А)Р(В)Р(с)+р(а)Р(в)Р(С)+Р(А)Р(в)Р(С)+Р(а)Р(В)Р(с)+Р(А)Р(в)Р(с)+Р(а)Р(В)Р(С)
или
Р(А+В+С)=Р(А)Р(В)Р(С)+Р(А)Р(В)Р(с)+р(а)Р(в)Р(С)+Р(А)Р(в)Р(С)+Р(а)Р(В)Р(с)+Р(А)Р(в)Р(с)+Р(а)Р(В)Р(С)
вероятность тройного промаха Р(а)Р(в)Р(с) вам не нужна здесь, любое событие кроме тройного промаха ведет к попаданию в зайца.
ошибаетесь. вместо красного 0,25 должно стоять 0,75. и тогда результат будет равен 1. и ну никак не 0.8125
ошибаетесь. это расчет вероятности_наступления_либо_тройного_промаха,_либо_тройного_попадания. нафига вам это - не понятно..
теперь уже сами видите, что нифига не совпадает, ибо наверху вы ошибку допустили.
и вот с этим "гениальным решением" вы пытаетесь выступать с апломбом и пафосом, мол:
В ответ на:
Определить вероятность поражения цели ТРЕМЯ ПУЛЯМИ
Определить вероятность поражения цели ТРЕМЯ ПУЛЯМИ
ошибаетесь. в задаче это не спрашивали, в задаче спрашивается вероятность хоть одного попадания.
В ответ на:
Событие «поражение цели тремя пулями »
есть сумма А+В+С.
Событие «поражение цели тремя пулями »
есть сумма А+В+С.
ошибаетесь. правильно так: одновременное тройное попадание - это произведение А*B*C
В ответ на:
Р(А+В) = Р(А)xР(В).
Р(А+В) = Р(А)xР(В).
ошибаетесь. правильно так: P(AB) = P(A)*P(B)
В ответ на:
р(А+В+С)=Р(А)Р(В)Р(С)+Р(а)Р(в)Р(с)+Р(А)Р(В)Р(с)+р(а)Р(в)Р(С)+Р(А)Р(в)Р(С)+Р(а)Р(В)Р(с)+Р(А)Р(в)Р(с)+Р(а)Р(В)Р(С)
р(А+В+С)=Р(А)Р(В)Р(С)+Р(а)Р(в)Р(с)+Р(А)Р(В)Р(с)+р(а)Р(в)Р(С)+Р(А)Р(в)Р(С)+Р(а)Р(В)Р(с)+Р(А)Р(в)Р(с)+Р(а)Р(В)Р(С)
ошибаетесь. правильно так:
1 = Р(А)Р(В)Р(С)+Р(а)Р(в)Р(с)+Р(А)Р(В)Р(с)+р(а)Р(в)Р(С)+Р(А)Р(в)Р(С)+Р(а)Р(В)Р(с)+Р(А)Р(в)Р(с)+Р(а)Р(В)Р(С)
или
Р(А+В+С)=Р(А)Р(В)Р(С)+Р(А)Р(В)Р(с)+р(а)Р(в)Р(С)+Р(А)Р(в)Р(С)+Р(а)Р(В)Р(с)+Р(А)Р(в)Р(с)+Р(а)Р(В)Р(С)
вероятность тройного промаха Р(а)Р(в)Р(с) вам не нужна здесь, любое событие кроме тройного промаха ведет к попаданию в зайца.
В ответ на:
р(А+В+С)=Р(А)Р(В)Р(С)+Р(а)Р(в)Р(с)+Р(А)Р(В)Р(с)+р(а)Р(в)Р(С)+Р(А)Р(в)Р(С)+Р(а)Р(В)Р(с)+Р(А)Р(в)Р(с)+Р(а)Р(В)Р(С)
(0.75х0.5х0.25)+(0.25х0.5х0.75)+(0.75х0.5х0.75)+(0.25х0.5х0.25)+(0.75х0.5х0.25)+(0.25х0.5х0.75)+(0.75х0.5х0.25)+(0.25х0.5х0.25)
р(А+В+С)=Р(А)Р(В)Р(С)+Р(а)Р(в)Р(с)+Р(А)Р(В)Р(с)+р(а)Р(в)Р(С)+Р(А)Р(в)Р(С)+Р(а)Р(В)Р(с)+Р(А)Р(в)Р(с)+Р(а)Р(В)Р(С)
(0.75х0.5х0.25)+(0.25х0.5х0.75)+(0.75х0.5х0.75)+(0.25х0.5х0.25)+(0.75х0.5х0.25)+(0.25х0.5х0.75)+(0.75х0.5х0.25)+(0.25х0.5х0.25)
ошибаетесь. вместо красного 0,25 должно стоять 0,75. и тогда результат будет равен 1. и ну никак не 0.8125
В ответ на:
расчитаем вероятность промаха ...
Р(а+в+с)=Р(а)Р(в)Р(с)+Р(А)Р(В)Р(С)=(0.25х0.5х0.75)+(0.75х0.5х0.25)=0.1875
расчитаем вероятность промаха ...
Р(а+в+с)=Р(а)Р(в)Р(с)+Р(А)Р(В)Р(С)=(0.25х0.5х0.75)+(0.75х0.5х0.25)=0.1875
ошибаетесь. это расчет вероятности_наступления_либо_тройного_промаха,_либо_тройного_попадания. нафига вам это - не понятно..
В ответ на:
Р(а)=1-0.1875=0.8125
что совпадает с полученым ранее значением ..
Р(а)=1-0.1875=0.8125
что совпадает с полученым ранее значением ..
теперь уже сами видите, что нифига не совпадает, ибо наверху вы ошибку допустили.
и вот с этим "гениальным решением" вы пытаетесь выступать с апломбом и пафосом, мол:
В ответ на:
о чем с вами говорить???
а то забавно выходит ..сидит человек который не способен рещшать ..и судит тех кто умеет ..
смешно ..
о чем с вами говорить???
а то забавно выходит ..сидит человек который не способен рещшать ..и судит тех кто умеет ..
смешно ..
В ответ на:
вот так и с Израилем ...только говорить ..а когда на математических конкурсах международных требуется решать задачи ..оказывается что они в ПРИНЦИПЕ не способны ни на что ...оказываются из года в год в самом конце списка стран..после бурундии и таджикистана.. умом не блещут ..
вот так и с Израилем ...только говорить ..а когда на математических конкурсах международных требуется решать задачи ..оказывается что они в ПРИНЦИПЕ не способны ни на что ...оказываются из года в год в самом конце списка стран..после бурундии и таджикистана.. умом не блещут ..
NEW 16.07.13 19:48
in Antwort cobrа 16.07.13 18:18
Дело Ваше конечно, но имхо зря. Не нужно пытаться общаться на равных с подобными людьми. Учить, показывать ошибки... не нужно. Пусть всегда остаются на своем некомпетентном уровне и воспроизводят его дальше в своем потомстве. Каждый бит знания, переданный таким людям, превращается в еще одну каплю зла.
NEW 16.07.13 19:55
in Antwort Ludvig 16.07.13 19:48
[b Ludvig]
неправда Ваша)
любая информация и уж непосредственное обращение к вопрошающему или желающему улучшить свои познания, пусть даже так, в сетевом общении - не остается с нулевым результатом.
Кто-то реально задумается и откроет страничку учебника, кто-то сходу получит нужную справку, а ранжировка по уровню компетентность или не..Это невежливо, по меньшей мере.
Все вошли сюда без предъявления сертификата об образовании, не так ли?
неправда Ваша)
любая информация и уж непосредственное обращение к вопрошающему или желающему улучшить свои познания, пусть даже так, в сетевом общении - не остается с нулевым результатом.
Кто-то реально задумается и откроет страничку учебника, кто-то сходу получит нужную справку, а ранжировка по уровню компетентность или не..Это невежливо, по меньшей мере.
Все вошли сюда без предъявления сертификата об образовании, не так ли?
NEW 16.07.13 22:12
in Antwort zhyks 16.07.13 20:55
NEW 17.07.13 19:26
in Antwort ..Aphrodite.. 16.07.13 22:12
В ответ на:
есть конечно сетевые профессиональные форумы, целевые, но мы же не там? так?
Лично я задачу кажется достаточно понял. Мы же не там и мы же не прфессионалы. Задачка практически школьная.есть конечно сетевые профессиональные форумы, целевые, но мы же не там? так?
NEW 17.07.13 22:16
ну да ..но если бы был один стрелок--то
вероятность вычисленная
была бы каким то определенным числом ..
а так как стрелка три ..то вероятность число неопределенное..от ...и до
++++++++++++++++++++
от 25%
(когда попадет только один стрелок у которого вероятность поражения один к четырем..то есть 25%(самая меньшая вероятность)..а два других промахнуться)
и до
(когда попадут все три...ведь это события в данном случае независимые и одновременые )

in Antwort cobrа 16.07.13 18:18
В ответ на:
ошибаетесь. в задаче это не спрашивали, в задаче спрашивается вероятность хоть одного попадания.
ошибаетесь. в задаче это не спрашивали, в задаче спрашивается вероятность хоть одного попадания.
ну да ..но если бы был один стрелок--то
вероятность вычисленная
была бы каким то определенным числом ..
а так как стрелка три ..то вероятность число неопределенное..от ...и до
++++++++++++++++++++
от 25%
(когда попадет только один стрелок у которого вероятность поражения один к четырем..то есть 25%(самая меньшая вероятность)..а два других промахнуться)
и до
(когда попадут все три...ведь это события в данном случае независимые и одновременые )
NEW 18.07.13 01:19
in Antwort valera_hamburg 17.07.13 22:16
давайте, вы сначала почитаете учебник, прежде чем что-то писать. в каждом предложении ересь. в каждом..



