Евреи в сегодняшнеи России
В ответ на:Во-2-х, 968 опрошенных на 150 тысяч неопрошенных - это нерепрезентативная выборка.
Исходя из количества опрошенных невозможно сказать какая это выборка
а эти слова Фонд Мозеса Мендельсона (думаю, солидность этой организации никто оспаривать не будет) проводил эмпирические исследования и опросы среди еврейских эмигрантов в 34 городах Германии и 15 еврейских общинах. говорят в пользу ее репрезентативности.
Кроме того, Ваше утверждение о "работах и учeбах" не сравнимо с фактами исследователей. (Про неблагополучие говорилось и в зентрал рад дер юден также.)
http://feelosophy.narod.ru/Mr/Mr_051.html
РЕПРЕЗЕНТАТИВНАЯ ВЫБОРКА
Фактически мы начнем не с одного, а с трех вопросов: что такое выборка? когда она является репрезентативной? что она собой представляет?
Совокупность √ это любая группа людей, организаций, интересующих нас событий, относительно которых мы хотим
сделать выводы, а случай, или объект, √ любой элемент такой совокупности 1 . Выборка √ любая подгруппа совокупности случаев (объектов), выделенная для анализа. Если мы захотим изучить деятельность законодателей штата по принятию решений, мы могли бы исследовать такую деятельность в законодательных органах штатов Виргиния, Северная Каролина и Южная Каролина, а не во всех пятидесяти штатах и, исходя из этого, распространить полученные данные на генеральную совокупность, из которой были выбраны эти три штата. Если мы хотим исследовать систему предпочтений избирателей Пенсильвании, мы могли бы сделать это, опросив 50 рабочих компании ⌠Ю. С. Стил■ в Питсбурге, и распространить результаты опроса на всех избирателей штата. Аналогично, если мы хотим измерить умственные способности студентов колледжей, мы могли бы протестировать всех игроков защиты, зарегистрированных
в штате Огайо в данном футбольном сезоне, и затем распространить полученные результаты на генеральную совокупность, частью которой они являются. В каждом примере мы действуем следующим образом: устанавливаем подгруппу внутри генеральной совокупности, довольно [c.154] подробно изучаем эту подгруппу, или выборку, и распространяем наши результаты на всю совокупность. Это и есть основные этапы формирования выборки.
Однако представляется совершенно очевидным, что каждая из этих выборок имеет существенный недостаток. К примеру, хотя законодательные органы Виргинии, Северной Каролины и Южной Каролины и являются частью совокупности законодательных органов штатов, они в силу исторических, географических и политических причин, скорее всего, будут действовать очень схожим образом и совсем иначе, чем законодательные органы таких отличающихся от них штатов, как Нью-Йорк, Небраска и Аляска. Хотя пятьдесят рабочих-сталелитейщиков в Питсбурге
действительно могут быть избирателями штата Пенсильвания, они в силу социально-экономического статуса, образования и жизненного опыта, вполне возможно, будут иметь взгляды, отличные от взглядов многих других людей, точно так же являющихся избирателями. И точно так же, хотя футболисты штата Огайо и являются студентами колледжей, они в силу самых разных причин вполне могут отличаться от других студентов. Иными словами, хотя каждая из этих подгрупп действительно является выборкой, члены каждой из них систематически отличаются от большинства остальных членов совокупности, из которой они выбраны. В качестве отдельной группы ни одна из них не является типичной с точки зрения распределения признаков мнений, мотивов поведения и характеристик в генеральной совокупности, с которой она ассоциируется. Соответственно, политологи сказали бы, что ни одна из этих выборок не
является репрезентативной.
Репрезентативная выборка √ это такая выборка, в которой все основные признаки генеральной совокупности, из которой извлечена данная выборка, представлены приблизительно в той же пропорции или с той же частотой, с которой данный признак выступает в этой генеральной совокупности. Таким образом, если 50% всех законодательных органов штатов собираются лишь раз в два года, приблизительно половина состава репрезентативной выборки законодательных органов штатов должна быть такого типа. Если 30% избирателей Пенсильвании принадлежат к ⌠синим воротничкам■, около 30% репрезентативной [c.155] выборки для этих избирателей (а не 100%, как в приведенном выше примере) должны быть из числа ⌠синих воротничков■. И если 2% всех студентов колледжей являются спортсменами, приблизительно та же самая часть репрезентативной выборки студентов колледжей должна приходиться на спортсменов. Иными словами,
репрезентативная выборка представляет собой микрокосм, меньшую по размеру, но точную модель генеральной совокупности, которую она должна отражать. В той степени, в какой выборка является репрезентативной, выводы, основанные на изучении этой выборки, можно без всяких опасений считать применимыми к исходной совокупности. Это распространение результатов и есть то, что мы называем генерализуемостью.
Возможно, пояснить это поможет графическая иллюстрация. Предположим, мы хотим изучать модели членства в политических группах среди взрослого населения США. На рис.5.1 изображено три круга, разделенных на шесть равных секторов. Рис.5.1а представляет всю рассматриваемую совокупность. Члены совокупности расклассифицированы в соответствии с политическими группами (такими, как партии и группы интересов), к которым они относятся. В этом примере каждый взрослый принадлежит по меньшей мере к одной и не более чем к шести
политическим группам; и эти шесть уровней членства в одинаковой степени распространены в совокупности (отсюда равные сектора). Предположим, мы хотим исследовать мотивы вступления людей в группу, выбор группы и модели участия, однако из-за ограниченности ресурсов мы в состоянии обследовать только одного из каждых шести членов совокупности. Кого же отобрать для анализа?
Одну из возможных выборок заданного объема иллюстрирует заштрихованная область на рис.5.1б , однако она явно не отражает структуру совокупности. Если бы мы делали обобщения на основе этой выборки, мы пришли бы к выводу: (1) что все взрослые американцы принадлежат к пяти политическим группам и (2) что все групповое поведение американцев совпадает с поведением тех, кто принадлежит именно к пяти группам. Однако мы знаем, что первый вывод не верен, и
это может зародить в нас сомнение относительно валидности второго. Таким образом, [c.156] выборка, изображенная на рис.5.1б , нерепрезентативна, поскольку она не отражает распределение данного свойства совокупности (часто называемого параметром) в соответствии с его реальным распространением. Про такую выборку говорят, что она смещена в направлении к членам пяти групп или смещена в направлении от всех остальных моделей членства в группах. Опираясь на такую смещенную выборку, мы обычно приходим к ошибочным выводам относительно генеральной совокупности.
Ярче всего это может быть продемонстрировано на примере катастрофы, постигшей в 30-е годы журнал ⌠Литэрари дайджест■, который организовал опрос общественного мнения относительно результатов выборов. ⌠Литэрари дайджест■ представлял собой периодическое издание, в котором перепечатывались редакционные статьи из газет и другие материалы, отражавшие общественное мнение; этот журнал был
очень популярен в начале века. Начиная с 1920 г. журнал проводил широкомасштабный общенациональный опрос, в ходе которого более чем миллиону человек по почте рассылались избирательные бюллетени с просьбой отметить, чья кандидатура на предстоящих президентских выборах для них предпочтительнее. В течение ряда лет результаты опроса, проводившиеся журналом, оказывались настолько точными, что опрос, проведенный в сентябре, казалось, делал ноябрьские выборы малосущественными. Да и как при такой большой выборке могла произойти ошибка? Однако в 1936 г. именно это и случилось: с большим перевесом голосов (60:40) победа была предсказана кандидату от республиканской партии Альфу Ландону. На выборах Ландон проиграл инвалиду √ [c.157] Франклину Д. Рузвельту √ практически с тем же результатом, с которым должен был победить. Доверие к ⌠Литэрари дайджест■ было столь сильно
подорвано, что вскоре после этого журнал перестал выходить. Что же произошло? Все очень просто: в голосовании, проведенном ⌠Дайджест■, использовалась смещенная выборка. Почтовые открытки рассылались людям, чьи имена были извлечены из двух источников: телефонных справочников и списков регистрации автомобилей. И хотя прежде этот метод отбора не слишком отличался от других методов, совсем по-другому обстояло дело теперь, во время Великой депрессии 1936 г., когда менее состоятельные избиратели, наиболее вероятная опора Рузвельта, не могли позволить себе иметь телефон, не говоря уж об автомобиле. Таким образом, фактически выборка, использовавшаяся в опросе, организованном ⌠Дайджест■, была смещена в сторону тех, кто, скорее всего, должен был выступать за республиканцев, и при этом еще удивительно, что у Рузвельта был такой хороший результат.
Как же решить эту проблему?
Возвращаясь к нашему примеру, сравним выборку на рис.5.1б с выборкой на рис.5.1в . В последнем случае для анализа также отобрана шестая часть совокупности, однако каждый из основных типов совокупности представлен в выборке в той пропорции, в которой он представлен во всей совокупности. Такая выборка демонстрирует, что один из каждых шести взрослых американцев принадлежит к одной политической группе, один из шести √ к двум и т.д. Такая выборка позволит также выявить другие различия между ее членами, которые могли бы соотноситься с участием в разном числе групп. Таким образом, выборка, представленная на рис.5.1в , является репрезентативной выборкой для рассматриваемой совокупности.
Конечно, данный пример является упрощенным по крайней мере с двух чрезвычайно важных точек зрения. Во-первых, большинство совокупностей, интересующих политологов, более разнообразно,
чем та, что приведена в примере. Люди, документы, правительства, организации, решения и т.п. отличаются друг от друга не по одному, а по гораздо большему числу признаков. Таким образом, репрезентативная выборка должна быть такой, чтобы каждая из основных, отличная от других область была [c.158] представлена пропорционально ее доле в совокупности. Во-вторых, ситуация, когда реальное распределение переменных, или признаков, которые мы хотим измерить, заранее неизвестно, встречается гораздо чаще, чем противоположная, √ возможно, оно не измерялось в предшествующей переписи населения. Таким образом, репрезентативная выборка должна быть построена так, чтобы она могла точно отражать существующее распределение даже тогда, когда мы не в состоянии прямо оценить ее валидность. Процедура формирования выборки должна иметь внутреннюю логику, способную убедить нас, что, будь мы в состоянии сравнить
выборку с переписью, она действительно оказалась бы репрезентативной.
Чтобы обеспечить возможность точного отражения сложной организации данной совокупности и определенную степень уверенности в том, что предлагаемые процедуры способны сделать это, исследователи обращаются к методам статистики. При этом они действуют по двум направлениям. Во-первых, используя определенные правила (внутреннюю логику), исследователи решают вопрос о том, какие именно конкретные объекты им изучать, что именно включать в конкретную выборку. Во-вторых, используя совсем другие правила, они решают, сколько объектов выбрать. Мы не будем подробно изучать эти многочисленные правила, рассмотрим лишь их роль в политологическом исследовании. Начнем рассмотрение со стратегий выбора объектов, образующих репрезентативную выборку. [c.159]
Далее:
Процедуры формирования репрезентативной выборки
http://feelosophy.narod.ru/Mr/Mr_052.html
Ведущий принцип, лежащий в основе такой процедуры, √ это принцип рандомизации, случайности. Выборка
называется случайной (иногда мы будем говорить простая случайная или чистая случайная выборка), если выполняется два условия. Во-первых, выборка должна быть построена таким образом, чтобы любой человек или объект в пределах совокупности имел равные возможности быть отобранным для анализа. Во-вторых, выборка должна быть сформирована так, чтобы любое сочетание из п объектов (где п √ просто количество объектов, или случаев, в выборке) имело равные возможности быть отобранным для анализа. Все это звучит довольно сложно. И действительно, это более строгое определение случайности, чем то, которым мы пользуемся в быту; однако в основе своей случайный выбор √ довольно простое и незамысловатое понятие. Это почти то же самое, что выбор с помощью лотереи. Если у нас имеется совокупность, состоящая из 1000 человек, чье поведение
мы хотим изучить, исследовав репрезентативную выборку, состоящую из [c.160] 100 человек, мы могли бы написать имена всех 1000 членов совокупности на листочках бумаги одинакового размера, сложить их в барабан, хорошо перемешать и отобрать имена 100 человек в нашу в выборку. При такой процедуре каждый человек имеет равную вероятность быть выбранным (100 шансов из 1 000, или, иными словами, 1 шанс из 10), любое возможное сочетание из 100 человек также имеет равную вероятность выбора. Наличие этих двух видов равновероятности и делает выборку случайной.
...
Предположим, что из совокупности в 10 000 публичных заявлений, сделанных министерством обороны, мы хотим сформировать выборку размером в 500 документов; предположим также, что мы как свои пять пальцев знаем хронологический список, включающий все 10 000 документов. Чтобы отобрать
систематическую случайную выборку:
1. Мы делим количество объектов в совокупности на желательный размер выборки, чтобы определить число к (в данном случае к= 10 000:500=20).
2. С помощью таблицы случайных чисел мы выбираем номер объекта между 1 и к (в нашем примере между 1 и 20) для включения в нашу выборку.
3. Мы движемся по списку документов, выбирая каждый к-й (двадцатый) объект.
Таким образом, если к равно 20 и мы пользуемся фрагментом таблицы случайных чисел, представленном на рис.5.2, начиная с верхнего левого угла таблицы, рассматривая двузначные числа (к в данном случае находится между 10 и 99) и используя только те элементы таблицы, которые соответствуют реальным номерам объектов (т.е. только те, которые находятся между 01 и 20), первым выбранным объектом будет 10. Мы, таким образом,
включаем в нашу выборку объекты 10, 30 (10+к), 50 (10+2к), 70 (10+3к) и т.д., и так вплоть до объекта 9900 (10+499к). Эту верхнюю границу выборки можно задать в виде общей формулы й+(н√1)к, где й √ первое случайное число, а н √ желаемый объем выборки. Таким образом, можно воспользоваться таблицей случайных чисел в сочетании с единым списком для формирования в целях осуществления анализа выборки объемом в 500 документов.
...
К счастью, существует другой метод, сохраняющий ценные для нас достоинства случайного выбора и лишенный большинства отмеченных недостатков. Этот метод (его называют либо методом кластерной выборки, либо методом многоступенчатого случайного районирования) нашел широкое применение в выборочном исследовании. В основе многоступенчатой случайной районированной выборки лежит следующее соображение: вместо того чтобы считать в качестве членов выборки
конкретных людей, будем рассматривать их как жителей того или иного пункта. Эта замена объясняется тем, что в отличие от людей, переезжающих с места на место, само по себе место жительства остается неизменным. Кроме того, расположение фактически любого места жительства в стране известно и нанесено на карту, каждое является частью различных географически определенных зон, таких, как кварталы, переписные участки, избирательные участки, законодательные округа, города, районы, округа, избирательные округа по выборам в конгресс и, наконец, штаты.
Lex salus populi suprema