Вход на сайт
Ожидает популяцию Homo sapiens коллапс?
3621 просмотров
Перейти к просмотру всей ветки
в ответ kleinerfuchs 06.05.08 16:09
Ядерная бомба и ядерный реактор - это не одно и тоже
Вы знаете как взорвался ядерный реактор в Чернобыле?
А как взорвалась ядерная бомба на Хирасиме?
Специально для Вас:
Ядерная бомба:
В основу ядерного оружия положена неуправляемая цепная реакция деления ядра. Существуют две основные схемы: ╚пушечная╩ и взрывная имплозия. ╚Пушечная╩ схема характерна для самых примитивных моделей ядерного оружия I-го поколения. Суть е╦ заключается в ╚выстреливании╩ навстречу друг другу двух блоков делящегося вещества докритической массы. Данный способ детонации возможен только в урановых боеприпасах, так как плутоний имеет более высокую скорость детонации. Вторая схема подразумевает подрыв боевого ядра бомбы таким образом, чтобы сжатие было направлено в точку фокуса (она может быть одна, или их может быть несколько). Это достигается обкладыванием боевого ядра зарядами взрывчатки и наличием схемы прецизионного управления подрывом.
Мощность ядерного заряда, работающего исключительно на принципах деления тяж╦лых элементов, ограничивается сотнями килотонн. Создать более мощный чисто ядерный заряд если и возможно, то крайне затруднительно: увеличение массы делящегося вещества не решает проблему, так как начавшийся взрыв распыляет часть топлива, оно не успевает прореагировать полностью и, таким образом, оказывается бесполезным, лишь увеличивая массу боеприпаса и радиоактивное поражение местности. Самый мощный чисто ядерный боеприпас в мире был испытан в США 15 ноября 1952 года, мощность взрыва составила 500 кт[1].
Ядерный реактор:
Управление ядерным реактором
Основная статья: Управление ядерным реактором
Ядерный реактор может работать с заданной мощностью в течение длительного времени только в том случае, если в начале работы имеет запас реактивности. Протекающие в реакторе процессы вызывают ухудшение размножающих свойств среды, и без механизма восстановления реактивности реактор не смог бы работать даже малое время. Первоначальный запас реактивности создается пут╦м постройки активной зоны с размерами, значительно превосходящими критические. Чтобы реактор не становился надкритичным, в активную зону вводятся вещества-поглотители нейтронов. Поглотители входят в состав материала управляющих стержней, перемещающихся по соответствующим каналам в активной зоне. Прич╦м если для регулирования достаточно всего нескольких стержней, то для компенсации начального избытка реактивности число стержней может достигать сотни. Компенсирующие стержни постепенно выводятся из активной зоны реактора, обеспечивая критическое состояние в течение всего времени его работы. Компенсация выгорания может также достигаться применением специальных поглотителей, эффективность которых убывает при захвате ими нейтронов (Cd, В, редкоземельные элементы) или растворов поглощающих веществ в замедлителе.
Управление ядерным реактором упрощает тот факт, что часть нейтронов при делении вылетает из осколков с запаздыванием, которое может составить от 0,2 до 55 сек. Благодаря этому, нейтронный поток и, соответственно, мощность изменяются достаточно плавно, давая время на принятие решения и изменение состояния реактора извне.
Для управления ядерным реактором служит система управления и защиты (СУЗ). Органы СУЗ делятся на:
Аварийные, уменьшающие реактивность (вводящие в реактор отрицательную реактивность) при появлении аварийных сигналов;
Автоматические регуляторы, поддерживающие постоянным нейтронный поток Ф (то есть мощность на выходе);
Компенсирующие, служащие для компенсации отравления, выгорания, температурных эффектов.
В большинстве случаев для управления реактором используют стержни, вводимые в активную зону, изготовленные из материалов, сильно поглощающих нейтроны (Cd, В и др.). Движение стержней управляется специальными механизмами, работающими по сигналам приборов, чувствительных к величине нейтронного потока.
Работа органов СУЗ заметно упрощается для реакторов с отрицательным температурным коэффициентом реактивности (с ростом температуры r уменьшается).
На основе информации о состоянии реактора, специальным вычислительным комплексом формируются рекомендации оператору по изменению состояния реактора, либо, в определ╦нных пределах, управление реактором производится без участия оператора.
На случай непредвиденного катастрофического развития цепной реакции, в каждом реакторе предусмотрено экстренное прекращение цепной реакции, осуществляемое сбрасыванием в активную зону специальных аварийных стержней или стержней безопасности ? система аварийной защиты.
Вы знаете как взорвался ядерный реактор в Чернобыле?
А как взорвалась ядерная бомба на Хирасиме?
Специально для Вас:
Ядерная бомба:
В основу ядерного оружия положена неуправляемая цепная реакция деления ядра. Существуют две основные схемы: ╚пушечная╩ и взрывная имплозия. ╚Пушечная╩ схема характерна для самых примитивных моделей ядерного оружия I-го поколения. Суть е╦ заключается в ╚выстреливании╩ навстречу друг другу двух блоков делящегося вещества докритической массы. Данный способ детонации возможен только в урановых боеприпасах, так как плутоний имеет более высокую скорость детонации. Вторая схема подразумевает подрыв боевого ядра бомбы таким образом, чтобы сжатие было направлено в точку фокуса (она может быть одна, или их может быть несколько). Это достигается обкладыванием боевого ядра зарядами взрывчатки и наличием схемы прецизионного управления подрывом.
Мощность ядерного заряда, работающего исключительно на принципах деления тяж╦лых элементов, ограничивается сотнями килотонн. Создать более мощный чисто ядерный заряд если и возможно, то крайне затруднительно: увеличение массы делящегося вещества не решает проблему, так как начавшийся взрыв распыляет часть топлива, оно не успевает прореагировать полностью и, таким образом, оказывается бесполезным, лишь увеличивая массу боеприпаса и радиоактивное поражение местности. Самый мощный чисто ядерный боеприпас в мире был испытан в США 15 ноября 1952 года, мощность взрыва составила 500 кт[1].
Ядерный реактор:
Управление ядерным реактором
Основная статья: Управление ядерным реактором
Ядерный реактор может работать с заданной мощностью в течение длительного времени только в том случае, если в начале работы имеет запас реактивности. Протекающие в реакторе процессы вызывают ухудшение размножающих свойств среды, и без механизма восстановления реактивности реактор не смог бы работать даже малое время. Первоначальный запас реактивности создается пут╦м постройки активной зоны с размерами, значительно превосходящими критические. Чтобы реактор не становился надкритичным, в активную зону вводятся вещества-поглотители нейтронов. Поглотители входят в состав материала управляющих стержней, перемещающихся по соответствующим каналам в активной зоне. Прич╦м если для регулирования достаточно всего нескольких стержней, то для компенсации начального избытка реактивности число стержней может достигать сотни. Компенсирующие стержни постепенно выводятся из активной зоны реактора, обеспечивая критическое состояние в течение всего времени его работы. Компенсация выгорания может также достигаться применением специальных поглотителей, эффективность которых убывает при захвате ими нейтронов (Cd, В, редкоземельные элементы) или растворов поглощающих веществ в замедлителе.
Управление ядерным реактором упрощает тот факт, что часть нейтронов при делении вылетает из осколков с запаздыванием, которое может составить от 0,2 до 55 сек. Благодаря этому, нейтронный поток и, соответственно, мощность изменяются достаточно плавно, давая время на принятие решения и изменение состояния реактора извне.
Для управления ядерным реактором служит система управления и защиты (СУЗ). Органы СУЗ делятся на:
Аварийные, уменьшающие реактивность (вводящие в реактор отрицательную реактивность) при появлении аварийных сигналов;
Автоматические регуляторы, поддерживающие постоянным нейтронный поток Ф (то есть мощность на выходе);
Компенсирующие, служащие для компенсации отравления, выгорания, температурных эффектов.
В большинстве случаев для управления реактором используют стержни, вводимые в активную зону, изготовленные из материалов, сильно поглощающих нейтроны (Cd, В и др.). Движение стержней управляется специальными механизмами, работающими по сигналам приборов, чувствительных к величине нейтронного потока.
Работа органов СУЗ заметно упрощается для реакторов с отрицательным температурным коэффициентом реактивности (с ростом температуры r уменьшается).
На основе информации о состоянии реактора, специальным вычислительным комплексом формируются рекомендации оператору по изменению состояния реактора, либо, в определ╦нных пределах, управление реактором производится без участия оператора.
На случай непредвиденного катастрофического развития цепной реакции, в каждом реакторе предусмотрено экстренное прекращение цепной реакции, осуществляемое сбрасыванием в активную зону специальных аварийных стержней или стержней безопасности ? система аварийной защиты.
