Вход на сайт
генетически модифицированные растения
1883 просмотров
Перейти к просмотру всей ветки
в ответ passing 11.09.10 00:19, Последний раз изменено 11.09.10 18:34 (Irma_)
В ответ на:
Принцип создания трансгенных растений и животных схожи. И в том, и в другом случае в ДНК искусственно вносятся чужеродные последовательности, которые встраивают, интегрируют генетическую информацию вида.
Принцип создания трансгенных растений и животных схожи. И в том, и в другом случае в ДНК искусственно вносятся чужеродные последовательности, которые встраивают, интегрируют генетическую информацию вида.
В ответ на:
некоторые специалисты считают, что существует риск выпуска нестабильного вида растений, передача заданных свойств сорнякам, влияние на биоразнообразие планеты, и главное - потенциальная опасность для биологических объектов, для здоровья человека путем переноса встроенного гена в микрофлору кишечника или образование из модифицированных белков под воздействием нормальных ферментов, так называемых минорных компонентов, способных оказывать негативное влияние.
некоторые специалисты считают, что существует риск выпуска нестабильного вида растений, передача заданных свойств сорнякам, влияние на биоразнообразие планеты, и главное - потенциальная опасность для биологических объектов, для здоровья человека путем переноса встроенного гена в микрофлору кишечника или образование из модифицированных белков под воздействием нормальных ферментов, так называемых минорных компонентов, способных оказывать негативное влияние.
В ответ на:
Вот примеры из американской практики: чтобы помидоры и клубника были морозоустойчивее, им "вживляют" гены северных рыб; чтобы кукурузу не пожирали вредители, ей могут "привить" очень активный ген, полученный из яда змеи; чтобы скот быстрее набирал вес, ему вкалывают измененный гормон роста (но при этом молоко наполняется гормонами, вызывающими рак); чтобы соя не боялась гербицидов, в нее внедряют гены петунии, а также некоторых бактерий и вирусов.
Вот примеры из американской практики: чтобы помидоры и клубника были морозоустойчивее, им "вживляют" гены северных рыб; чтобы кукурузу не пожирали вредители, ей могут "привить" очень активный ген, полученный из яда змеи; чтобы скот быстрее набирал вес, ему вкалывают измененный гормон роста (но при этом молоко наполняется гормонами, вызывающими рак); чтобы соя не боялась гербицидов, в нее внедряют гены петунии, а также некоторых бактерий и вирусов.
Боже, какой ужас.


В ответ на:
Существует несколько достаточно широко распространенных методов для внедрения чужеродной ДНК в геном растения.
Метод 1:
Существует бактерия Agrobacterium tumefaciens (Лат.- полевая бактерия, вызывающая опухоли), которая обладает способностью встраивать участки своей ДНК в растения, после чего пораженные клетки растения начинают очень быстро делиться и образуется опухоль. Сначала ученые получили штамм этой бактерии, не вызывающий опухолей, но не лишенный возможности вносить свою ДНК в клетку. В дальнейшем нужный ген сначала клонировали в Agrobacterium tumefaciens и затем заражали уже этой бактерией растение. После чего инфецированые клетки растения приобретали нужные свойства, а вырастить целое растение из одной его клетки сейчас не проблема.
Метод 2:
Клетки, предварительно обработанные специальными реагентами, разрушающими толстую клеточную оболочку, помещают в раствор, содержащий ДНК и вещества, способствующие ее проникновению в клетку. После чего выращивали из одной клетки целое растение.
Метод 3:
Существует метод бомбардировки растительных клеток специальными, очень маленькими вольфрамовыми пулями, содержащими ДНК. С некоторой вероятностью такая пуля может правильно передать генетический материал клетке и так растение получает новые свойства. А сама пуля ввиду ее микроскопических размеров не мешает нормальному развитию клетки.
Итак, задача, которую надо решить при создании трансгенного растения - организма с такими генами, которые ему от природы "не положены", - это выделить нужный ген из чужой ДНК и встроить его в молекулу ДНК данного растения. Процесс этот весьма сложен.
Более четверти века назад были открыты ферменты рестриктазы, разделяющие длинную молекулу ДНК на отдельные участки - гены, причем эти кусочки приобретают "липкие" концы, позволяющие им встраиваться в разрезанную такими же рестриктазами чужую ДНК.
Самый распространенный способ внедрения чужих генов в наследственный аппарат растений - с помощью болезнетворной для растений бактерии Agrobacterium tumefaciens. Эта бактерия умеет встраивать в хромосомы заражаемого растения часть своей ДНК, которая заставляет растение усилить производство гормонов, и в результате некоторые клетки бурно делятся, возникает опухоль. В опухоли бактерия находит для себя отличную питательную среду и размножается. Для генной инженерии специально выведен штамм агробактерии, лишенный способности вызывать опухоли, но сохранивший возможность вносить свою ДНК в растительную клетку.
Нужный ген "вклеивают" с помощью рестриктаз в кольцевую молекулу ДНК бактерии, так называемую плазмиду. Эта же плазмида несет ген устойчивости к антибиотику. Лишь очень небольшая доля таких операций оказывается успешной. Те бактериальные клетки, которые примут в свой генетический аппарат "прооперированные" плазмиды, получат кроме нового полезного гена устойчивость к антибиотику. Их легко будет выявить, полив культуру бактерий антибиотиком, - все прочие клетки погибнут, а удачно получившие нужную плазмиду размножатся. Теперь этими бактериями заражают клетки, взятые, например, из листа растения. Опять приходится провести отбор на устойчивость к антибиотику: выживут лишь те клетки, которые приобрели эту устойчивость от плазмид агробактерии, а значит, получили и нужный нам ген. Дальнейшее - дело техники. Ботаники уже давно умеют вырастить целое растение из практически любой его клетки.
Однако этот метод "работает" не на всех растениях: агробактерия, например, не заражает такие важные пищевые растения, как рис, пшеница, кукуруза. Поэтому разработаны другие способы. Например, можно ферментами растворить толстую клеточную оболочку растительной клетки, мешающую прямому проникновению чужой ДНК, и поместить такие очищенные клетки в раствор, содержащий ДНК и какое-либо химическое вещество, способствующее ее проникновению в клетку (чаще всего применяется полиэтиленгликоль). Иногда в мембране клеток проделывают микроотверстия короткими импульсами высокого напряжения, а через отверстия в клетку могут пройти отрезки ДНК. Иногда применяют даже впрыскивание ДНК в клетку микрошприцем под контролем микроскопа. Несколько лет назад было предложено покрывать ДНК сверхмалые металлические "пули", например шарики из вольфрама диаметром 1-2 микрона, и "стрелять" ими в растительные клетки. Проделываемые в стенке клетки отверстия быстро заживляются, а застрявшие в протоплазме "пули" так малы, что не мешают клетке функционировать. Часть "залпа" приносит успех: некоторые "пули" внедряют свою ДНК в нужное место. Дальше из клеток, воспринявших нужный ген, выращивают целые растения, которые затем размножаются обычным способом.
Существует несколько достаточно широко распространенных методов для внедрения чужеродной ДНК в геном растения.
Метод 1:
Существует бактерия Agrobacterium tumefaciens (Лат.- полевая бактерия, вызывающая опухоли), которая обладает способностью встраивать участки своей ДНК в растения, после чего пораженные клетки растения начинают очень быстро делиться и образуется опухоль. Сначала ученые получили штамм этой бактерии, не вызывающий опухолей, но не лишенный возможности вносить свою ДНК в клетку. В дальнейшем нужный ген сначала клонировали в Agrobacterium tumefaciens и затем заражали уже этой бактерией растение. После чего инфецированые клетки растения приобретали нужные свойства, а вырастить целое растение из одной его клетки сейчас не проблема.
Метод 2:
Клетки, предварительно обработанные специальными реагентами, разрушающими толстую клеточную оболочку, помещают в раствор, содержащий ДНК и вещества, способствующие ее проникновению в клетку. После чего выращивали из одной клетки целое растение.
Метод 3:
Существует метод бомбардировки растительных клеток специальными, очень маленькими вольфрамовыми пулями, содержащими ДНК. С некоторой вероятностью такая пуля может правильно передать генетический материал клетке и так растение получает новые свойства. А сама пуля ввиду ее микроскопических размеров не мешает нормальному развитию клетки.
Итак, задача, которую надо решить при создании трансгенного растения - организма с такими генами, которые ему от природы "не положены", - это выделить нужный ген из чужой ДНК и встроить его в молекулу ДНК данного растения. Процесс этот весьма сложен.
Более четверти века назад были открыты ферменты рестриктазы, разделяющие длинную молекулу ДНК на отдельные участки - гены, причем эти кусочки приобретают "липкие" концы, позволяющие им встраиваться в разрезанную такими же рестриктазами чужую ДНК.
Самый распространенный способ внедрения чужих генов в наследственный аппарат растений - с помощью болезнетворной для растений бактерии Agrobacterium tumefaciens. Эта бактерия умеет встраивать в хромосомы заражаемого растения часть своей ДНК, которая заставляет растение усилить производство гормонов, и в результате некоторые клетки бурно делятся, возникает опухоль. В опухоли бактерия находит для себя отличную питательную среду и размножается. Для генной инженерии специально выведен штамм агробактерии, лишенный способности вызывать опухоли, но сохранивший возможность вносить свою ДНК в растительную клетку.
Нужный ген "вклеивают" с помощью рестриктаз в кольцевую молекулу ДНК бактерии, так называемую плазмиду. Эта же плазмида несет ген устойчивости к антибиотику. Лишь очень небольшая доля таких операций оказывается успешной. Те бактериальные клетки, которые примут в свой генетический аппарат "прооперированные" плазмиды, получат кроме нового полезного гена устойчивость к антибиотику. Их легко будет выявить, полив культуру бактерий антибиотиком, - все прочие клетки погибнут, а удачно получившие нужную плазмиду размножатся. Теперь этими бактериями заражают клетки, взятые, например, из листа растения. Опять приходится провести отбор на устойчивость к антибиотику: выживут лишь те клетки, которые приобрели эту устойчивость от плазмид агробактерии, а значит, получили и нужный нам ген. Дальнейшее - дело техники. Ботаники уже давно умеют вырастить целое растение из практически любой его клетки.
Однако этот метод "работает" не на всех растениях: агробактерия, например, не заражает такие важные пищевые растения, как рис, пшеница, кукуруза. Поэтому разработаны другие способы. Например, можно ферментами растворить толстую клеточную оболочку растительной клетки, мешающую прямому проникновению чужой ДНК, и поместить такие очищенные клетки в раствор, содержащий ДНК и какое-либо химическое вещество, способствующее ее проникновению в клетку (чаще всего применяется полиэтиленгликоль). Иногда в мембране клеток проделывают микроотверстия короткими импульсами высокого напряжения, а через отверстия в клетку могут пройти отрезки ДНК. Иногда применяют даже впрыскивание ДНК в клетку микрошприцем под контролем микроскопа. Несколько лет назад было предложено покрывать ДНК сверхмалые металлические "пули", например шарики из вольфрама диаметром 1-2 микрона, и "стрелять" ими в растительные клетки. Проделываемые в стенке клетки отверстия быстро заживляются, а застрявшие в протоплазме "пули" так малы, что не мешают клетке функционировать. Часть "залпа" приносит успех: некоторые "пули" внедряют свою ДНК в нужное место. Дальше из клеток, воспринявших нужный ген, выращивают целые растения, которые затем размножаются обычным способом.

В ответ на:
Как трансгенные продукты отличить от натуральных
Выяснить, содержит ли продукт измененный ген, можно только с помощью сложных лабораторных исследований...даже специалист, не имея под рукой профессиональных инструментов или даже целой лаборатории, не скажет вам с уверенностью - есть на вашем столе трансгенные продукты или нет.
Как трансгенные продукты отличить от натуральных
Выяснить, содержит ли продукт измененный ген, можно только с помощью сложных лабораторных исследований...даже специалист, не имея под рукой профессиональных инструментов или даже целой лаборатории, не скажет вам с уверенностью - есть на вашем столе трансгенные продукты или нет.
Что там писал Собака на Сене (кажется, он) про срез картошки?

В ответ на:
Особая гордость наших специалистов - картофель, от которого гибнут колорадские жуки. Для экологов он же главный раздражитель. Специалисты говорят, что при поедании трансгенного картофеля, у крыс наступает изменение состава крови, изменение размеров внутренних органов, а также появляются патологии в значительно большем количестве, чем при поедании обычного картофеля.
Однако ученые заявляют, что случающиеся проколы не повод запрещать направление в целом. Трансгенные исследования в десятки раз быстрее мичуринского метода селекции и даже безопаснее.
Особая гордость наших специалистов - картофель, от которого гибнут колорадские жуки. Для экологов он же главный раздражитель. Специалисты говорят, что при поедании трансгенного картофеля, у крыс наступает изменение состава крови, изменение размеров внутренних органов, а также появляются патологии в значительно большем количестве, чем при поедании обычного картофеля.
Однако ученые заявляют, что случающиеся проколы не повод запрещать направление в целом. Трансгенные исследования в десятки раз быстрее мичуринского метода селекции и даже безопаснее.
Ну, да... Очень безопасно более частое изменение состава крови, размеров внутренних органов и паталогии...
В ответ на:
Коровы с молоком невиданной жирности, рыба, живущая, как в соленой, так и в пресной воде, свиньи без сала - все нужно, прежде всего, для развития науки.
Коровы с молоком невиданной жирности, рыба, живущая, как в соленой, так и в пресной воде, свиньи без сала - все нужно, прежде всего, для развития науки.
Вот уж точно.

В ответ на:
Всевозможные экологические организации (например, "Гринпис"), объединение “Врачи и ученые против генетически модифицированных источников питания” считают, что рано или поздно “пожинать плоды” придется. Причем, возможно, не нам, а нашим детям и даже внукам. Как "чужие", не свойственные традиционным культурам гены повлияют на здоровье и развитие человека? В 1983 году США получили первый трансгенный табак, а широко и активно использовать в пищевой промышленности генно-модифицированное сырье начали всего какие-нибудь пять-шесть лет назад. Что будет через 50 лет, сегодня никто предсказать не в состоянии. Вряд ли мы превратимся в, например, "людей-свиней". Но есть и более логичные доводы. Скажем, новые медицинские и биологические препараты разрешаются к использованию на людях только после многолетних проверок на животных. Трансгенные продукты поступают в свободную продажу и уже охватывают несколько сотен наименований, хотя созданы они были всего несколько лет назад.
Всевозможные экологические организации (например, "Гринпис"), объединение “Врачи и ученые против генетически модифицированных источников питания” считают, что рано или поздно “пожинать плоды” придется. Причем, возможно, не нам, а нашим детям и даже внукам. Как "чужие", не свойственные традиционным культурам гены повлияют на здоровье и развитие человека? В 1983 году США получили первый трансгенный табак, а широко и активно использовать в пищевой промышленности генно-модифицированное сырье начали всего какие-нибудь пять-шесть лет назад. Что будет через 50 лет, сегодня никто предсказать не в состоянии. Вряд ли мы превратимся в, например, "людей-свиней". Но есть и более логичные доводы. Скажем, новые медицинские и биологические препараты разрешаются к использованию на людях только после многолетних проверок на животных. Трансгенные продукты поступают в свободную продажу и уже охватывают несколько сотен наименований, хотя созданы они были всего несколько лет назад.
Н-да. Бизнес!

В ответ на:
Впервые в истории транснациональные биотехнологические корпорации становятся архитекторами и "хозяевами" жизни.
Впервые в истории транснациональные биотехнологические корпорации становятся архитекторами и "хозяевами" жизни.

В ответ на:
Практика генной инженерии в отношении пищевых продуктов и тканей приводит к непредсказуемым результатам и представляет угрозу для людей, животных, окружающей среды и будущего устойчивого органического земледелия. Как указал британский молекулярный биолог доктор Майкл Антониу, манипуляции с генами приводят к "неожиданному появлению токсинов в трансгенных бактериях, дрожжах, растениях и животных, причем это явление остается незамеченным до тех пор, пока не нанесет серьезный ущерб чьему-либо здоровью".
Практика генной инженерии в отношении пищевых продуктов и тканей приводит к непредсказуемым результатам и представляет угрозу для людей, животных, окружающей среды и будущего устойчивого органического земледелия. Как указал британский молекулярный биолог доктор Майкл Антониу, манипуляции с генами приводят к "неожиданному появлению токсинов в трансгенных бактериях, дрожжах, растениях и животных, причем это явление остается незамеченным до тех пор, пока не нанесет серьезный ущерб чьему-либо здоровью".
В ответ на:
Генетически модифицированные продукты, вне всякого сомнения, могут содержать токсины и представлять угрозу для здоровья людей. В 1989 году в результате пищевой добавки L-tryptophan погибло 37 и пострадало (в том числе получило пожизненную инвалидность) свыше 5000 человек (у которых было обнаружено болезненное и нередко приводящее к летальному исходу поражение кровеносной системы - эосинофильно-миальгический синдром), прежде чем Служба продовольствия и медикаментов США аннулировала свое разрешение на розничную продажу продукта. Производитель добавки, третья по величине японская химическая компания Showa Denko, на первом этапе, в 1988-1989 годах, использовала для ее изготовления генетически измененную бактерию. По-видимому, бактерия приобрела свои опасные свойства в результате рекомбинации ее ДНК. Showa Denko уже выплатила пострадавшим свыше двух миллиардов долларов США в качестве компенсации. В 1999 году передовицы британских газет были посвящены вызвавшим громкий скандал исследованиям ученого Роуэттовского института доктора Арпада Пустаи, обнаружившего, что генетически измененный картофель, в ДНК которого были встроены гены подснежника и часто используемого промотора - вируса капустной мозаики, вызывает заболевания молочных желез. Было обнаружено, что "картофель-подснежник" значительно отличается по своему химическому составу от обычного картофеля и поражает жизненно важные органы и иммунную систему у питающихся им лабораторных крыс.
Генетически модифицированные продукты, вне всякого сомнения, могут содержать токсины и представлять угрозу для здоровья людей. В 1989 году в результате пищевой добавки L-tryptophan погибло 37 и пострадало (в том числе получило пожизненную инвалидность) свыше 5000 человек (у которых было обнаружено болезненное и нередко приводящее к летальному исходу поражение кровеносной системы - эосинофильно-миальгический синдром), прежде чем Служба продовольствия и медикаментов США аннулировала свое разрешение на розничную продажу продукта. Производитель добавки, третья по величине японская химическая компания Showa Denko, на первом этапе, в 1988-1989 годах, использовала для ее изготовления генетически измененную бактерию. По-видимому, бактерия приобрела свои опасные свойства в результате рекомбинации ее ДНК. Showa Denko уже выплатила пострадавшим свыше двух миллиардов долларов США в качестве компенсации. В 1999 году передовицы британских газет были посвящены вызвавшим громкий скандал исследованиям ученого Роуэттовского института доктора Арпада Пустаи, обнаружившего, что генетически измененный картофель, в ДНК которого были встроены гены подснежника и часто используемого промотора - вируса капустной мозаики, вызывает заболевания молочных желез. Было обнаружено, что "картофель-подснежник" значительно отличается по своему химическому составу от обычного картофеля и поражает жизненно важные органы и иммунную систему у питающихся им лабораторных крыс.
В ответ на:
Угрозу массового заболевания, вызванного употреблением в пищу трансгенных продуктов, буквально в последнюю минуту удалось предотвратить в 1996 году ученым штата Небраска, благодаря тестам на животных обнаружившим, что ген бразильского ореха, введенный в ДНК сои, способен вызвать смертельно опасную аллергию у людей, чувствительных к этому ореху. Люди, страдающие пищевыми аллергиями (а им подвержены, по статистике, 8 % американских детей), последствия которых могут быть самыми различными - от легкого недомогания до внезапной смерти - едва не стали жертвами воздействия чужеродных протеинов, встроенных в ДНК обычных пищевых продуктов.
Угрозу массового заболевания, вызванного употреблением в пищу трансгенных продуктов, буквально в последнюю минуту удалось предотвратить в 1996 году ученым штата Небраска, благодаря тестам на животных обнаружившим, что ген бразильского ореха, введенный в ДНК сои, способен вызвать смертельно опасную аллергию у людей, чувствительных к этому ореху. Люди, страдающие пищевыми аллергиями (а им подвержены, по статистике, 8 % американских детей), последствия которых могут быть самыми различными - от легкого недомогания до внезапной смерти - едва не стали жертвами воздействия чужеродных протеинов, встроенных в ДНК обычных пищевых продуктов.
Ну, это вкратце. Кто хочет почитать всё, то вам сюда:
http://revolution.allbest.ru/cookery/00008843_0.html

..правильнее проживать свои чувства, а не прятаться от них. (с)